From Time-domain Separation of Stationary Temporally Correlated Sources to Frequency-domain Separation of Nonstationary Sources

نویسندگان

  • Shahram HOSSEINI
  • Yannick DEVILLE
  • Hicham SAYLANI
  • Edouard Belin
چکیده

This paper demonstrates and exploits some interesting frequency-domain properties of nonstationary signals. Considering these properties, a new method for blind separation of linear instantaneous mixtures of mutually uncorrelated, nonstationary, real sources is proposed which is based on spectral decorrelation of the sources. It allows the existing timedomain algorithms developed for stationary, temporally correlated sources to be applied to nonstationary, temporally uncorrelated sources just by mapping the mixtures into the frequency domain. The method sets no constraint on the piecewise stationarity of the sources, unlike most of previously reported methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Separation of Nonstationary Sources by Spectral Decorrelation

This paper demonstrates and exploits some interesting frequency-domain properties of nonstationary signals. Considering these properties, two new methods for blind separation of linear instantaneous mixtures of mutually uncorrelated, nonstationary sources are proposed. These methods are based on spectral decorrelation of the sources. The second method is particularly important because it allows...

متن کامل

Blind Separation of Jointly Stationary Correlated Sources

The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most of the proposed techniques for solving this problem rely on independence or at least uncorrelation assumption for source signals. This paper introduces a technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting ...

متن کامل

Equivariant nonstationary source separation

Most of source separation methods focus on stationary sources, so higher-order statistics is necessary for successful separation, unless sources are temporally correlated. For nonstationary sources, however, it was shown [Neural Networks 8 (1995) 411] that source separation could be achieved by second-order decorrelation. In this paper, we consider the cost function proposed by Matsuoka et al. ...

متن کامل

Second Order Nonstationary Source Separation

This paper addresses a method of blind source separation that jointly exploits the nonstationarity and temporal structure of sources. The method needs only multiple time-delayed correlation matrices of the observation data, each of which is evaluated at different time-windowed data frame, to estimate the demixing matrix. The method is insensitive to the temporally white noise since it is based ...

متن کامل

Markovian blind separation of non-stationary temporally correlated sources

In a previous work, we developed a quasi-efficient maximum likelihood approach for blindly separating stationary, temporally correlated sources modeled by Markov processes. In this paper, we propose to extend this idea to separate mixtures of non-stationary sources. To handle non-stationarity, two methods based respectively on blocking and kernel smoothing are used to find parametric estimates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004